
1

040712
DCV

Event Driven Data Acquisition
for the

Recycler Ring BPM Front-end

Duane C. Voy

Introduction
The Recycler BPM front-end is designed to provide two types of data acquisition
services:

• Command driven – on demand measurements through application program, and
• Event driven – autonomous measurements upon predetermined clock events.

The BPM front-end treats these two measurement types similarly with command driven
being a special case of event driven acquisition. This note describes the operation of the

event driven acquisition capability of the BPM front-end and touches on issues related to
data retrieval by console application programs and the Shot Data Acquisition system.

Events
The events of interest are typically those related to the transfer of beam into and out of

the Recycler for protons and antiprotons. Today transfers occur regularly between the
Main Injector and the Recycler. Future transfers between the Accumulator and Recycler
using the Main Injector as a transport line are anticipated as well. A list of the six most

common transfers and associated clock system events follows.

Transfer type Beam type Tclk - arm Bsync - trigger

Main Injector -> Recycler Proton $E2 $A2
Main Injector -> Recycler Pbar $E0 $A0
Recycler -> Main Injector Proton $E3 $A3

Recycler -> Main Injector Pbar $E4 $A7
Recycler -> Accumulator Proton $96 $A6
Accumulator -> Recycler Pbar $E1 $A1

The scheme used to implement event triggered data acquisition involves an arm event
transmitted over the Tclk system followed by a trigger event transmitted over the Bsync

system. The Tclk arm and Bsync trigger events are always treated as a pair with each
arm event occurring a minimum of 400 mSec before its related trigger event. The
400 mSec specification for the time between arm and trigger allows the BPM front-end to

2

040712
DCV

abort any untriggered previous measurement and then configure the data acquisition

hardware for the new measurement. Tclk arm events are dedicated indicators of beam
state and do not have differing meaning across various machine operating contexts. All
of the 254 possible Tclk arm events are available, but each enabled Tclk arm event must

adhere to the minimum timing and exclusive use requirements stated above. (Note that
although supported by the BPM front-end most Tclk events are not appropriate for use as
arm events.) The Tclk arm event and Bsync trigger event pair will be referred to simply

as an event in further discussion.

The BPM front-end supports data acquisition on a maximum of sixteen events with each

capable of making any of the defined position measurements. Events are uniquely
identified by the eEventIndex enumeration having the following definition:

typedef enum {
 kEventIndexMin = 0,
 kEventInteractive = kEventIndexMin,
 kEventRepetitive,
 kMainInjectorProtonToRecycler,
 kMainInjectorPbarToRecycler,
 kRecyclerProtonToMainInjector,
 kRecyclerPbarToMainInjector,
 kRecyclerProtonToAccumulator,
 kAccumulatorPbarToRecycler,
 kEventIndexMax = 15,
 kNumEventIndexs,
 kEventIndexDefault = kEventInteractive
} eEventIndex;

The text of the enumeration constants outlined above fairly succinctly documents the
meaning of each value. Two enumeration values deserve additional discussion. The

value kEventInteractive identifies command driven measurements made whenever a
user at a console program issues a measurement request. Interactive measurements are
unique in that their arm event is implied by the arrival of the measurement request at the

front-end. The value kEventRepetitive identifies the (periodic) measurements often
referred to as background measurements. If enabled the repetitive measurement runs
whenever none of the other measurements are armed. All other enumeration values refer

to measurements that will not occur until the related Tclk/Bsync event pair is realized.

Event Programming

The sixteen events described above represent sixteen measurements that may be
programmed into the BPM front-end at any one time. The data to be acquired for each of

3

040712
DCV

the sixteen measurements is specified by an Acquisition Specification1 having the

following definition:

// structure sent by ACNet to specify measurement global parameters
class AcquisitionSpecification {
 eAcquisitionControl _enable;
 eMeasurement _measurement;
 eBeamMode _beamMode;
 eBeamType _beamType;
 eMeasurementType _measurementType;
 eArmEvent _armEvent;
 eTriggerEvent _triggerEvent;
 ePretriggerControl _pretriggerEnable;
 eTriggerDelay _triggerDelay;
 eGlobalDelay _globalDelay;
 float _intensityThreshold;
 eTriggerTimeout _timeout;
};

Each member of the class is a four byte quantity resulting in a total size of 48 bytes. The
definition of each member follows.

typedef enum { // range of _enable member
 kAcquisitionControlMin = 0,
 kAcquisitionOff = kAcquisitionControlMin,
 kAcquisitionOn,
 kAcquisitionControlMax = kAcquisitionOn,
 kNumAcquisitionControls,
 kAcquisitionControlDefault = kAcquisitionOff
} eAcquisitionControl;

The _enable member allows for enabling and disabling acquisition on the associated
event. This can be used, for example, to disable the background measurement.

typedef enum { // legitimate range of _measurement member
 kMeasurementMin = 0,
 kRepetitiveSingleGate = kMeasurementMin,
 kOneShotMultipleGate,
 kOneShotSingleGate,
 kPrearm,
 kTimingScan,
 kTurnToTurnPeriod,
 kMeasurementMax = kTurnByTurnPeriod,
 kNumMeasurements,
 kMeasurementDefault = kBackground
} eMeasurement;

1 Acquisition specifications are generally defined by machine personnel and remain unchanged for long
periods of time. They may in fact be treated as constants.

4

040712
DCV

The _measurement member describes the type of position measurement to be made. The

three beam position measurement types include: repetitive single gate which makes a
single turn measurement at a specified frequency, one-shot multiple gate which makes a
multiple turn measurement upon a specified arm/trigger event, and one-shot single gate

which makes a single turn measurement upon a specified arm/trigger event. The prearm
measurement type is a dummy measurement capable of enabling and disabling other
specified measurements upon a specified arm/trigger event. Additional measurement

types are for system diagnostics and testing.

typedef enum { // legitimate range of _beamMode member
 kBeamModeMin = 0,
 kAntiproton = kBeamModeMin,
 kProton,
 kCalibration,
 kBeamModeMax = kCalibration,
 kNumBeamModes,
 kBeamModeDefault = kAntiproton
} eBeamMode;

The _beamMode member describes the timing characteristics of acquisition on the

associated event. The measurement system uses different temporal offsets from the
Bsync trigger event for proton or antiproton (and calibration) measurements. Note that
when the calibration source is enabled this field will be ignored and unique calibration

timing will be used.

typedef enum { // range of _beamType member
 kBeamTypeMin = 0,
 kInjectExtract = kBeamTypeMin,
 kHot,
 kHotHead,
 kHotTail,
 kCold,
 kColdHead,
 kColdTail,
 kBeamTypeMax = kColdTail,
 kNumBeamTypes,
 kBeamTypeDefault = kInjectExtract
} eBeamType;

The _beamType member describes the timing characteristics of acquisition on the
associated event. The measurement system uses temporal offset information derived

from the Mdat system to measure the various types of beam (e.g., injected, hot or cold).
This member specifies which Mdat message is to be used.

typedef enum { // range of _beamMeasurement member
 kMeasurementTypeMin = 0,
 k2_5MHzEnsemble = kMeasurementTypeMin,

5

040712
DCV

 k2_5MHzBunchbyBunch,
 k2_5MHzNarrowBand,
 kUnbunchedEnsemble,
 kUnbunchedHeadTail,
 k89KHzNarrowBand,
 kCount,
 kRaw,
 kRawLong,
 kMeasurementTypeMax = kRawLong,
 kNumMeasurementTypes,
 kMeasurementTypeDefault = k2_5MHzBunchEnsembleWB
} eMeasurementType;

The _measurementType member describes the frequency characteristics of acquisition on

the associated event. The analog acquisition subsystem uses various digital filters to
make measurements. This member specifies the filter to be used.

typedef enum { // range of _armEvent member
 kArmEventMin = 0x00,
 kArmTclk0x00 = kArmEventMin,
 kArmTclk0xfd = 0xfd,
 kArmAutomatic = 0x100,
 kArmEventMax = kArmAutomatic,
 kNumArmEvents,
 kArmEventDefault = kArmInteractive
} eArmEvent;

The _armEvent member describes the arm event characteristics of acquisition on the

associated event. Measurement arm events can be any of the (reasonable) Tclk events, or
in the case of interactive and repetitive measurements the measurement request itself.

typedef enum { // range of _triggerEvent member
 kTriggerEventMin = 0x00,
 kTriggerBsync0x00 = kTriggerEventMin,
 kTriggerBsync0xff = 0xff,
 kTriggerPeriodic,
 kTriggerExternal,
 kTriggerEventMax = kTriggerExternal,
 kNumTriggerEvents,
 kTriggerEventDefault = 0xda
} eTriggerEvent;

The _triggerEvent member describes the trigger event characteristics of acquisition on

the associated event. Measurement trigger events can be any of the (reasonable) Bsync
events, an external trigger input to the BPM front-end or the periodic trigger described
below.

typedef enum { // range of _pretriggerEnable member
 kPretriggerControlMin = 0,
 kPretriggerDelayOff = kPretriggerControlMin,
 kPretriggerDelayOn,
 kPretriggerControlMax = kPretriggerDelayOn,

6

040712
DCV

 kNumPretriggerControls,
 kPretriggerControlDefault = kPretriggerDelayOn
} ePretriggerControl;
The _pretriggerEnable member allows for enabling and disabling a delay,
measured in turns, between the specified trigger event and the beginning of
data acquisition. This pretrigger delay is normally only enabled for injection
and extraction measurements where it is used to adjust for kicker system to
first turn latency. In the Recycler this value is nominally 33 turns.

typedef enum { // range of _triggerDelay member - turns
 kTriggerDelayMin = 0,
 kPeriodicFrequencyMin = 2,
 kTriggerDelayMax = 65535 - 535,
 kNumTriggerDelays,
 kTriggerDelayDefault = 0,
 kPeriodicFrequencyDefault = 200,
 kPeriodicFrequencyMax = 500
} eTriggerDelay;

The _triggerDelay member describes the timing characteristics of acquisition on the

associated event. The trigger delay member has differing meaning depending upon the
value of the _triggerEvent member described above. If a Bsync trigger event is
specified then trigger delay is in units of turns and represents a delay between the Bsync

trigger event and the first measured data. Normally on event triggered acquisitions the
BPM front-end acquires data from the first 2048 turns after the trigger. The trigger delay
allows this 2048 sample ‘window’ to be moved out in time by up to an additional 65,535

turns. If an external trigger event is specified then trigger delay has no meaning. If a
periodic trigger event is specified then trigger delay is in units of Hertz and represents the
repetitive trigger frequency.

const unsigned long int kRfBucketsPerTurn = 588;
typedef enum { // range of _globalDelay member - RF buckets
 kGlobalDelayMin = kRfBucketsPerTurn * -2,
 kGlobalDelayMax = kRfBucketsPerTurn * 2,
 kNumGlobalDelays,
 kGlobalDelayDefault = 0
} eGlobalDelay;

The _globalDelay member describes the timing characteristics of acquisition on the
associated event. The global delay is a signed value in units of 53MHz buckets that
represents a delay between the Bsync trigger event and the first measured data. This is a

finer adjustment than the trigger delay member described above. The normal value for
the global delay member is ZERO.

The _intensityThreshold member is a single precision float that is used for
intensity discrimination. This one value is used for all channels on all
measurements. In turn-by-turn mode the comparison is made against the first
turn value only. Note that the intensity data does not have an absolute
calibration of particles per bunch. Use with CAUTION!

7

040712
DCV

typedef enum { // range of _timeout member - seconds
 kTriggerTimeoutMin = 1, // one second
 kTriggerTimeoutMax = 5 * 60, // five minutes
 kNumTriggerTimeouts = kTriggerTimeoutMax - kTriggerTimeoutMin + 1,
 kTriggerTimeoutDefault = 4 * 60, // four minutes
 kTriggerWaitForever = 0xffffffff
} eTriggerTimeout;

The _timeout member describes the timing characteristics of acquisition on the

associated event. The timeout value is in units of seconds and specifies how long the
BPM front-end should wait after the arrival if an arm event for an associated trigger
event. If the trigger does not arrive within the timeout period the measurement will be

aborted to allow the repetitive flash to resume.

The sixteen acquisition specifications are stored in an array and indexed by the

eEventIndex enumeration described above. The first two acquisition specifications
(element zero – kEventInteractive and element 1 - kEventRepetitive) are reserved for
use by interactive application programs. The armEvent field of these acquisition

specification must always be set to kArmAutomatic; conversely, all other acquisition
specifications must not have an armEvent field value of kArmAutomatic.

The _enable member of each acquisition specification controls data acquisition on all

subsequent events of that type. Events may be reconfigured at will by reprogramming
the appropriate acquisition specification. When setting an acquisition specification all
fields must be set at once – individual acquisition specification fields are not available to

application programs.

Data Acquisition
The BPM front-end maintains an individual raw data buffer for each of the sixteen
possible acquisition specifications. As a result the data acquired on any given event will

be available for retrieval until the next time that measurement becomes armed. Each raw
data buffer contains sufficient information to support the three classic position
measurements:

• Flash (turnNumber = 1..2048),
• Closed Orbit (beginTurn = 1..2048, numTurns = 1..2048) and
• Turn-by-turn (beginTurn = 1..2048, numTurns = 1..1024).

For closed orbit measurements the beginTurn and numTurns values must combine to be
less than or equal to 2048, and for turn-by-turn measurements the total number of turns
must not exceed 1024.

8

040712
DCV

Data Readout
The raw data collected with each acquisition provides the opportunity to obtain data for

many different position measurements. After an acquisition has completed the
application program specifies the desired position measurement with a Readout
Specification. Readout specifications identify the raw data to be used, the position

algorithm to be employed and the amount of data to be processed. Readout specifications
have the following definition:

// structure sent by ACNet to request specific measurement data
class ReadoutSpecification {
 eEventIndex _eventIndex;
 eDataType _dataType;
 eTurnNumber _beginTurn;
 eTurnCount _numTurns;
 eDataChannel _channel;
};

Each member of the class is a four byte quantity resulting in a total size of 20 bytes. The
definition of each member follows.

typedef enum { // range of _eventIndex member
 kEventIndexMin = 0,
 kEventInteractive = kEventIndexMin,
 kEventRepetitive,
 kMainInjectorProtonToRecycler,
 kMainInjectorPbarToRecycler,
 kRecyclerProtonToMainInjector,
 kRecyclerPbarToMainInjector,
 kRecyclerProtonToAccumulator,
 kAccumulatorPbarToRecycler,
 kEventIndexMax = 15,
 kNumEventIndexs,
 kEventIndexDefault = kEventInteractive
} eEventIndex;

The _eventIndex member identifies the event that produced the data of interest. This is
the same eEventIndex described above. The user can request data associated with any of
the sixteen triggering events.

typedef enum { // range of _dataType member
 kDataTypeMin = 0,
 kBunchedData = kDataTypeMin,
 kBunch1Data,
 kBunch2Data,
 kBunch3Data,

9

040712
DCV

 kBunch4Data,
 kHotData,
 kHotHeadData,
 kHotTailData,
 kColdData,
 kColdHeadData,
 kColdTailData,
 kDataTypeMax = kColdTailData,
 kNumDataTypes,
 kDataTypeDefault = kBunchedData
} eDataType;

The _dataType member identifies the data type of interest. The value specified with this

member must be coordinated with the value in the specified event’s
AcquisitionSpecification _beamType and _beamMeasurement members. For example
you can’t specify cold beam data if the acquisition specification had requested a bunched

beam measurement.

typedef enum { // range of _beginTurn member - turns
 kTurnNumberMin = 1,
 kTurnNumberMax = 2048,
 kNumTurnNumbers = kTurnNumberMax - kTurnNumberMin + 1,
 kTurnNumberDefault = 1
} eTurnNumber;

The _beginTurn member identifies the turn or turns of interest for flash, closed orbit and
turn-by-turn measurements. For flash measurements it specifies the single turn of interest

in the range 1 to 2048. For closed orbit and turn-by-turn measurements it specifies the
first turn of interest and works in combination with the _numTurns member. Users should
note that the sum of the _beginTurn and _numTurns member values may not exceed 2048.

typedef enum { // range of _numTurns member - turns
 kTurnCountMin = 1,
 kTurnCountMax = 1024,
 kNumTurnCounts = kTurnCountMax - kTurnCountMin + 1,
 kTurnCountDefault = 1,
 kClosedOrbitCountDefault = 100,
 kTurnByTurnCountDefault = 1024
} eTurnCount;

The _numTurns member identifies the number of turns of interest for closed orbit and
turn-by-turn measurements and works in combination with the _beginTurn member.
Users should note that the sum of the _beginTurn and _numTurns member values may not

exceed 2048.

typedef enum { // range of _channel member
 kDataChannelMin = 0,
 kDataChannelMax = 47,
 kDataChannels
} eDataChannel;

10

040712
DCV

The _channel member identifies the channel of interest for turn-by-turn measurements.

The turn-by-turn data type returns position and intensity data for a single channel only.

There are six readout specification devices and six readout data devices, one for each of

the BPM data types. Data devices are provided with values scaled to engineering units
and with values normalized to percent of full scale. The table below indicates the names
for the devices.

Specification Scaled Normalized Data

Device Device Device Type
R:BPxBFS R:BPxBFV R:BPxBFN background
R:BPxBCS R:BPxBCV R:BPxBCN background closed orbit

R:BPxFLS R:BPxFLV R:BPxFLN flash
R:BPxCOS R:BPxCOV R:BPxCON closed orbit
R:BPxTBS R:BPxTBV R:BPxTBN turn-by-turn

R:BPxTSS N/A R:BPxTSN timing scan

With this scheme the client specifies the desired data by setting the readout specification

device for the desired BPM data type and then reads the result from the associated
readout data device2. The analog and timing diagnostic data devices may be read at any
time without the requirement of first setting an associated specification device.

Shot Data Acquisition

Data for the Shot Data Acquisition system is handled through the cooperative efforts of
the Machine Sequencer and Shot Data Acquisition applications. The Machine Sequencer
makes measurement requests and the Shot Data Acquisition program reads the resulting

data at the appropriate time. This collaborative effort will be referred to simply as SDA
in further discussion.

SDA can program any or all of the sixteen acquisition specifications described above, but
has unique readout specification devices and readout data devices. The unique devices
prevent conflicts with interactive users enabling SDA to read data without the need for

2 Because ACNET is a connectionless protocol that does not support atomic request-reply operations a

simple protocol for a blocking set-read has been developed for requesting beam position data. See
Appendix A for a description of this protocol.

11

040712
DCV

device arbitration. SDA has access to the same data as interactive users. The table below

indicates the ACNet device names for the SDA data devices.

Specification Data Data

Device Device Type
R:BPxBFC R:BPxBFD background
R:BPxBCC R:BPxBCD background closed orbit

R:BPxFLC R:BPxFLD flash
R:BPxCOC R:BPxCOD closed orbit
R:BPxTBC R:BPxTBD turn-by-turn

Command Driven Acquisition

Requests for position measurements coming from interactive users at console application
programs are treated similarly to event driven requests. The first (element zero)
acquisition specification described above is a special acquisition specification device that

acts as a software arm event. When this device is set the BPM front-end will configure
the specified measurement, wait for the trigger event and collect the specified data.

Priorities and Preemption
The functional specification for the BPM system requires that newly arriving

measurement requests have priority over and abort any previously armed measurements
that have not completed. This philosophy is applied to acquisition specifications set by
interactive users and SDA. All events are processed in the order of arrival. An event

must be armed, triggered and acquired to be complete. If the BPM front-end has been
armed for an event but not triggered when a new arming event arrives the previous
measurement will be aborted and the newly armed measurement will be processed.

Interactive user measurement requests will be bumped by event or SDA generated
requests that come along while the front-end is waiting for the interactive request to be
triggered!

12

040712
DCV

APPENDIX A
The BPM front-end attempts to provide as much position information as possible for each
acquisition cycle by buffering enough raw data to produce Flash, Closed Orbit and Turn-

by-turn measurements from each trigger. Clients must specify which of these
measurements is desired before reading any data. This request-read activity can lead to
collisions if multiple clients are requesting data because ACNet does not support atomic

request-reply operations. A simple protocol has been devised to support data requests.
The protocol works as follows:

Client side:
• read BPM status to see if measurement is completed
• set readout specification

if error delay a while and try again
else read data ASAP

This is over simplified, it would be good style to include a maximum loop count for

example.

Front-end side:

• when measurement is completed set BPM status appropriately
• receive readout specification

if waiting for a read of this readout specification return error

else begin watchdog timer on new readout specification and wait for read
• if readout specification watchdog timer expires invalidate the readout specification
• receive data read request, cancel timer and return data according to readout specification

With this protocol client requests normally proceed rapidly with a setting of a request and
a reading of the associated data. If another client tries to request data before the first

client has completed its read the second client will get a busy status. That’s OK because
the second client will wait a moment and try again. When the first client has completed
its data read the BPM front-end will become not busy and be able to accept the second

client’s request. The watchdog timer used by the front end is set to a nominal value that
allows a client to successfully do a setting followed by a reading under normal ACNET
conditions – perhaps 2, 3 or more 15 Hz ticks.

End.

